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Abstract Objectives: This chapter reviews brain imaging findings in anorexia and

bulimia nervosa which characterize brain circuitry that may contribute to the

pathophysiology of eating disorders (EDs).

Summary of recent findings: Recent imaging studies provide evidence of

disturbed gustatory processing in EDs which involve the anterior insula as

well as striatal regions. These results raise the possibility that individuals with

anorexia nervosa have altered appetitive mechanism that may involve sensory,

interoceptive, or reward processes. Furthermore, evidence of altered reward

mechanisms is supported by studies that suggest that individuals with anorexia

nervosa and bulimia nervosa share a trait toward similar anterior ventral striatal

pathway dysregulation. This shared trait disturbance of the modulation of

reward and emotionality may create a vulnerability for dysregulated appetitive

behaviors. However, those with anorexia nervosa may be able to inhibit appetite

and have extraordinary self-control because of exaggerated dorsal cognitive

circuit function, whereas individuals with bulimia nervosa are vulnerable to

overeating when they get hungry, because they have less ability to control their

impulses.

Future directions: Current therapeutic interventions have modest success. Better

understanding of neurocircuits that may be related to altered appetite, mood,

impulse control, and other symptoms underlying the pathophysiology of EDs

might improve psychotherapeutic and drug treatment strategies.

Keywords Anorexia nervosa � Appetite regulation � Bulimia nervosa � Brain

imaging � Interoceptive awareness � Reward

1 Introduction

The pathophysiology of anorexia nervosa (AN) and bulimia nervosa (BN) is poorly

understood. The primary characteristic required for a DSM IV (Diagnostic and

Statistical Manual of Mental Disorders) diagnosis of AN and BN is pathological

eating: AN must restrict and lose weight, and BN must binge and purge. The

complex appetitive symptoms displayed by AN and BN are relatively unique and

tend not to be shared with other psychiatric disorders. The stereotypic presentation

and relentless expression of these feeding behaviors supports the possibility that

they reflect some aberrant function of appetitive pathways. In addition, many

individuals with eating disorders (ED) have (1) extremes of behavioral inhibition

and dysinhibition; (2) anxiety, depression, and obsessionality; and (3) puzzling

symptoms such as body image distortion, perfectionism, and anhedonia. Data

support the hypothesis that these behaviors tend to express in concert because

they are likely to be encoded in limbic and cognitive circuits known to modulate

and integrate neuronal processes related to appetite, emotionality, and cognitive

control.
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1.1 Confounding Effects of Malnutrition

When malnourished and emaciated, individuals with AN, and to a lesser degree

BN, have alterations of brain and peripheral organ function that are arguably

more severe than in any other psychiatric disorder; for example, enlarged

ventricles and sulci widening (Ellison and Fong 1998), altered brain metabolism

in frontal, cingulate, temporal, and parietal regions (Kaye et al. 2006), and

widespread neuropeptide, hormonal, and autonomic disturbances (Boyar et al.

1974; Jimerson and Wolfe 2006; Kaye et al. 2009). Determining whether such

symptoms are a consequence or a potential cause of pathological feeding

behavior or malnutrition is a major methodological problem in the field. It is

difficult to study EDs prospectively because of the young age of onset and

difficulty in premorbid identification of people who will develop EDs. Neurobi-

ological studies during the acute illness are confounded by the effects of

malnutrition. Thus we have used a method of identifying behavioral phenotypes

that are independent of the confounding effects of malnutrition by studying

women who are recovered AN and BN.

1.2 Vulnerabilities That Create a Risk for Developing
AN and BN

Recent studies show that certain childhood temperament and personality traits

(Lilenfeld et al. 2006; Stice 2002; Anderluh et al. 2003; Fairburn et al. 1999)

such as negative emotionality, harm avoidance, perfectionism, inhibition, drive

for thinness, altered interoceptive awareness, and obsessive–compulsive personal-

ity create a vulnerability for developing AN and BN. Malnutrition tends to exag-

gerate these premorbid behavioral traits (Pollice et al. 1997) after the onset of the

illness, with the addition of other symptoms that maintain or accelerate the disease

process, including exaggerated emotional dysregulation and obsessionality (Godart

et al. 2007; Kaye et al. 2004).

1.3 Recovered (REC) AN and BN Subjects

The process of recovery in AN is poorly understood and, in most cases, pro-

tracted. Still, approximately 50–70% of affected individuals will eventually have

complete or moderate resolution of the illness, often in the early to mid-20s

(Wagner et al. 2006a; Steinhausen 2002; Strober et al. 1997). It is important to

emphasize that temperament and personality traits such as negative emotionality,

harm avoidance and perfectionism, and obsessional behaviors persist after recovery

from both AN and BN (Casper 1990; Srinivasagam et al. 1995; Wagner et al. 2006a;
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Steinhausen 2002) and are similar to the symptoms described premorbidly in

childhood. Compared to the ill state, symptoms in REC AN and BN tend to be

mild to moderate, including elevated scores on core ED measures. Interestingly,

REC AN and BN tend to be more alike than different on many of these measures,

although there are some differences on factors related to impulse control or

stimuli seeking, such as novelty seeking (Strober et al. 1997; Wagner et al.

2006a; Lilenfeld et al. 2006).

1.4 Persistent Alterations in ED Found in Brain Imaging
Studies After Recovery

Studies from our group found that AN and BN after recovery show normalization of

gray and white matter volume (Wagner et al. 2006b) and cerebral blood flow (Frank

et al. 2007) and tend to have normal neuropeptide function (Kaye et al. 2009),

suggesting that these factors are not the cause of persistent neurobiological dis-

turbances. However, several studies in REC AN showed hypoperfusion of frontal,

temporal, parietal, and occipital regions (Rastam et al. 2001; Gordon et al. 1997) as

well as of frontal and anterior cingulate cortex (ACC) activation, in response to

pictures of food (Uher et al. 2003), suggesting disturbances of limbic and cognitive

neural circuits. Many studies suggest that disturbances of limbic and cognitive

neural networks occur in a range of psychiatric disorders, such as major depression

(Drevets 2001; Tremblay et al. 2005), anxiety disorders (Protopopescu et al. 2005;

Stein et al. 2007; Wright et al. 2003), and obsessive–compulsive disorder (OCD)

(Insel 1992; Saxena 2003). Specifically, a ventral neurocircuit (Phillips et al. 2003),

which includes the amygdala, insula, ventral striatum, and ventral regions of the

ACC and the prefrontal cortex (PFC), is necessary for identifying emotional

significance of stimuli and for generating affective responses to these stimuli.

These regions are also important for automatic regulation and mediation of auto-

nomic responses to emotional stimuli and contexts accompanying the production of

affective states. In comparison, a dorsal executive function neurocircuit, which

includes the hippocampus, dorsal regions of the caudate, dorsolateral prefrontal

cortex (DLPFC), parietal cortex, and other regions, is thought to modulate selective

attention, planning, and effortful regulation of affective states. It is possible that the

altered emotional regulation or cognition found in all of these syndromes involves

aberrant function of these circuits, but perhaps with different patterns on a molecu-

lar level (Phillips et al. 2003). In fact, neurobiological disturbances in EDs are

different from those found in depression, anxiety, or OCD. For example, decreased

5-HT1A receptor binding has been reported in ill (Drevets et al. 1999; Sargent et al.

2000) and recovered (Bhagwagar et al. 2004) depressed subjects, as well as those

with social phobia (Lanzenberger et al. 2007) and panic disorder (Neumeister

et al. 2004). However, increased 5-HT1A receptor binding has been found in EDs

(Kaye 2008).
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1.5 Implications

We hypothesize that behaviors and abnormal physiology that persist after REC are

a re-emergence of the vulnerabilities that created a risk for developing an ED.

While it is possible that these findings could be “scars” caused by chronic malnu-

trition, several studies (Bulik et al. 2007) show that these factors are heritable, occur

in unaffected family members, and are independent of body weight, which strongly

support the argument that they are traits, not scars. Because no agreed-upon

definition of recovery from AN or BN presently exists, our research studies employ

a definition that emphasizes stable and healthy body weight for more than 1 year,

with stable nutrition, relative absence of dietary abnormalities, normal menstrua-

tion, and free of medication. Because many individuals with AN and BN cross from

one subtype to another over the course of their illness, it is not possible to investi-

gate “pure” subtypes in the ill state. However, we can ascertain whether they had

pure or mixed subtypes over the course of their illness once they have recovered.

Thus we have studied pure subtypes of AN (REC AN; e.g., restricting- type who

never binged or purged) or BN (REC BN; e.g., no history of AN).

2 Appetitive Regulation and AN and BN

Due to the puzzling nature of many ED symptoms, the ED field lags behind other

psychiatric disorders in terms of progress in understanding responsible brain cir-

cuits and pathophysiology. Although AN and BN are characterized (APA 2000) as

EDs, it remains unknown as to whether there is a primary disturbance of appetitive

function. The regulation of appetite and feeding are complex phenomena, integrat-

ing peripheral signals (gastrointestinal (GI) tract, adipose tissue, hormonal secre-

tion, etc.), hypothalamic factors (neuropeptides), cortical and subcortical processes

(reward, emotionality, cognition), and external influences (Rolls 1997; Schwartz

et al. 2000; Elman et al. 2006). While it is possible that a disturbance could occur

anywhere in this axis in AN and BN, limbic and cortical brain circuits that

contribute to appetite are of particular interest because these circuits (1) show

persistent altered function after recovery and (2) code for rewarding and emotion-

ality properties of food, homeostatic needs, and cognitive modulation (Elman et al.

2006; Hinton et al. 2004; Kelley 2004).

2.1 Studies of Altered Feeding Behavior in AN and BN

Relatively little data exist on appetite regulation in ED despite the prominent nature

of these symptoms. Laboratory studies support clinical observations that individuals

with AN dislike high-fat foods (Fernstrom et al. 1994; Drewnowski et al. 1988)
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and BN tend to binge on sweet and high-fat foods (Kaye et al. 1992; Weltzin et al.

1991). These patterns of responses did not change following weight regain. Other

studies (Garfinkel et al. 1978, 1979) reported altered interoceptive disturbances in

AN in terms of the absence of satiety aversion to sucrose, and that these distur-

bances persisted after normalization of weight or failure to rate food as positive

when hungry (Santel et al. 2006). In addition, there is evidence (Kaye et al. 2003;

Strober 1995; Vitousek and Manke 1994) that there is an anxiety-reducing charac-

ter to dietary restraint in AN. For BN, negative mood states and hunger may

precipitate a binge (Hilbert and Tuschen-Caffier 2007; Smyth et al. 2007; Waters

et al. 2001) and overeating may relieve dysphoria and anxiety (Abraham and

Beaumont 1982; Kaye et al. 1986; Johnson and Larson 1982). Taken together,

these studies support the possibility of an altered response to palatable foods and a

dysphoria-reducing aspect to pathological eating.

2.2 Brain Imaging Studies of Feeding Behavior in AN and BN
Confirm Alterations in Limbic and Cognitive Circuits

Neuroimaging studies using different techniques in emaciated and malnourished

individuals with AN found consistently altered activity in the insula and orbito-

frontal cortex (OFC), as well as in mesial temporal, parietal, and the ACC regions

as compared to control women (CW) (Ellison et al. 1998; Gordon et al. 2001; Naruo

et al. 2000; Santel et al. 2006; Uher et al. 2004). One functional magnetic resonance

imaging (fMRI) study (Uher et al. 2003) found that pictures of food stimulated

ACC and medial prefrontal cortex (mPFC) activity in both ill and REC AN

individuals, but not CW. These findings suggest that hyperactivity of these regions

may be a trait marker of AN.

2.3 Neurocircuitry of Appetite Regulation

Sweet taste perception (Fig. 1) is peripherally mediated by tongue receptors (Chan-

draskekar et al. 2006) through cranial nerves, the nucleus tractus solitarius, and

thalamic ventroposterior medial nucleus, to the primary gustatory cortex, which in

humans comprise the frontal operculum and the anterior insula (AI) (Ogawa 1994;

Scott et al. 1986; Yaxley et al. 1990; Faurion et al. 1999; Schoenfeld et al. 2004).

Projections from the primary taste cortex reach the central nucleus of the amygdala

and, from there, the lateral hypothalamus and midbrain dopaminergic regions

(Simon et al. 2006). The primary taste cortex also projects heavily to the striatum

(Chikama et al. 1997; Fudge et al. 2005). The AI is contiguous with the posterior

OFC at the operculum. This region is reciprocally connected with the mPFC and
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ACC (Carmichael and Price 1996). The ventral striatum receives input from the AI

and ACC (Carmichael and Price 1996; Fudge et al. 2005; Haber et al. 1995).

The AI and associated gustatory cortex respond not only to the taste and physical

properties of food, but also to its rewarding properties (O’Doherty et al. 2001;

Schultz et al. 2000; Small 2002). Some studies argue that the AI provides a

Fig. 1 Schematic of cortical–striatal pathways with a focus on taste. Chemoreceptors on the

tongue detect a sweet taste. The signal is then transmitted through brainstem and thalamic taste

centers to the primary gustatory cortex, which lies adjacent to and is densely interconnected with

the anterior insula (AI). The AI is an integral part of the “ventral (limbic) neurocircuit” through its

connections with the amygdala, the anterior cingulate cortex, and the orbitofrontal cortex. Affer-

ents from the cortical structures involved in the ventral neurocircuit (AI and interconnected limbic

cortices) are directed to the ventral striatum, whereas cortical structures involved in cognitive

strategies (the dorsal neurocircuits) send inputs to the dorsolateral striatum. Thus, the sensory

aspects of taste are primarily an insula phenomenon, whereas higher cortical areas modulate

pleasure, motivation, and cognitive aspects of taste. These aspects are then integrated, resulting

in an “eat” or “don’t eat” decision. Coding the awareness of pleasant sensation from the taste

experience via the AI might be altered in AN patients, tipping the balance of striatal processes

away from normal, automatic reward responses mediated by the ventral striatum and toward a

more “strategic” approach mediated by the dorsal striatum. The figure links each cortical structure

with similarly colored arrows, indicating all cortical structures project to striatum in topographic

manner. ACC anterior cingulate cortex;DLPFC dorsolateral prefrontal cortex; NTS nucleus tractus
solitarius; OFC orbitofrontal cortex
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representation of food in the mouth which is independent of hunger and, thus, of

reward value (Rolls 2005), whereas the OFC computes the hedonic value of food

(O’Doherty et al. 2000; Kringelbach et al. 2003; Rolls 2005). Other studies (Small

et al. 2001) suggest that the AI and OFC have overlapping representations of

sensory and reward/affective processing of taste. The AI is centrally placed to

receive information about the salience (both appetitive and aversive) and relative

value of the stimulus environment and integrate this information with the effect that

these stimuli may have on the body state. The AI has bidirectional connections to

the amygdala, nucleus accumbens (Reynolds and Zahm 2005), and OFC (Ongur

and Price 2000). The striatum (Kelley 2004) receives inputs from brain regions

involved in reward, incentive learning, and emotional regulation, including the

ACC, the ventromedial PFC, the OFC, and AI (Fudge et al. 2004, 2005; Haber et al.

2006; Chikama et al. 1997). The OFC is associated with flexible responses to

changing stimuli (Izquierdo et al. 2004; Kazama and Bachevalier 2006) such as

the incentive value, e.g., whether the animal is hungry (Critchley and Rolls 1996;

Hikosaka and Watanabe 2000; Gottfried et al. 2003). Of note, the OFC is highly

dependent on 5-HT innervation for flexible reversal learning (Clarke et al. 2007), so

that 5-HT abnormalities in ED may contribute to the disturbed inhibitory control

(inability to incorporate changing incentive value of stimuli). The information

about the interoceptive state processed in the AI is relayed to the ACC, which, as

part of the central executive system, can generate an error signal that is critical for

conflict monitoring and the allocation of attentional resources (Carter et al. 1999).

Thus, interoception involves monitoring the sensations that are important for the

integrity of the internal body state and connecting to systems that are important for

allocating attention, evaluating context, and planning actions (Paulus and Stein

2006). The role of the AI is thus focused on how the value of stimuli might affect

the body state. Thus, these regions play an important role in determining homeo-

static appetitive needs when hungry or satiated. In addition, interoceptive sensa-

tions are often associated with intense affective and motivational components

(Paulus and Stein 2006), and the evaluative component of the signal is highly

dependent on the homeostatic state of the individual.

2.4 Gustatory fMRI Studies

Our group (Wagner et al. 2008) administered tastes of 10% sucrose and water in a

blind, controlled manner to individuals with REC AN and healthy CW. There were

two main findings: (1) Compared to CW, the individuals with REC AN had a

significantly reduced blood-oxygen-level dependent (BOLD) response to the blind

administration of sucrose or water in the AI (Fig. 1, left insula p¼ 0.003), ACC, and

striatal regions; (2) CW, but not individuals with REC AN, showed a positive

relationship between self-ratings of pleasantness and the intensity of the signal for

sugar in the AI, ventral, and dorsal putamen as well as ACC.
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2.5 Implication

Appetitive dysregulation in AN and BN is poorly understood. Appetite regulation is

a complex process that involves the integration of a wide variety of signals such as

energy needs in the body, hedonic attraction to palatable foods, and long-term

cognitive concerns about weight. The data reviewed above are the first to localize

potential pathology of appetite disturbances in individuals with AN. We hypothe-

size that REC AN individuals have altered incentive processing in the AI and

related regions. AN individuals fail to become appropriately hungry when starved,

and thus are able to become emaciated.

3 Does the Anterior Insula Contribute to Altered Interoceptive

Awareness in AN?

Do AN individuals have an AI disturbance specifically related to gustatory modu-

lation or a more generalized disturbance related to the integration of interoceptive

stimuli? Interoception has long been thought to be critical for self-awareness

because it provides the link between cognitive and affective processes and the

current body state (Craig 2002; Paulus and Stein 2006). This lack of recognition of

the symptoms of malnutrition, diminished insight and motivation to change, and

altered central coherence could be related to disturbed AI function.

It is thought that altered interoceptive awareness might be a precipitating and

reinforcing factor in AN (Bruch 1962; Fassino et al. 2004; Garner et al. 1983;

Lilenfeld et al. 2006). Indeed, many of the symptoms of AN, such as distorted body

image, lack of recognition of the symptoms of malnutrition (e.g., a failure to

appropriately respond to hunger), and diminished motivation to change, could be

related to disturbed interoceptive awareness. In particular, there might be a qualita-

tive change in the way that specific interoceptive information is processed. For

example, individuals with AN might experience an aversive visceral sensation

when exposed to food or food-related stimuli. This experience might fundamentally

alter the reward-related properties of food and result in a bias towards negative

emotionality. Moreover, the aversive interoceptive experience associated with food

might trigger top-down modulatory processes aimed at anticipating and minimizing

the exposure to food stimuli (“harm avoidance”), leading to increased anticipatory

processing aimed to reduce the exposure to the aversively valued stimulus. There-

fore, individuals with AN might exhibit attenuated responses to the immediate

reward-related signal of food (reducing hunger) but show increased responses to the

long-term reward signal associated with the goal of weight reduction or other

“ideal” cognitive constructs. Finally, the AI has been implicated in risk-prediction

errors (Preuschoff and Quartz 2008), suggesting that impairments in insula func-

tioning might lead to anomalous attitudes in a context of uncertainty and thus

contribute to harm avoidance. Thus, given the prominent alterations in insula
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activity in AN patients, one might speculate that these individuals experience an

altered sensitivity to or integration of internal body signals. Specifically, the

projection of the AI to the anterior cingulate may serve to modulate the degree to

which cognitive control is engaged to alter behavior toward poor decision making

that does not subserve the homeostatic weight balance but instead results in

progressive weight loss.

4 Reward Function in AN and BN

It is also possible that food has little rewarding value to AN and thus may be

associated with corresponding responses in the OFC or the striatum. Clinical

observations suggest that AN individuals have disturbed reward modulation that

affects a wide range of appetitive behaviors – not just food. Individuals with AN

have long been noted to be anhedonic and ascetic, and are able to sustain self-denial

of food as well as most comforts and pleasures in life (Frank et al. 2005). Reward is

one characteristic that differentiates AN and BN, since BN individuals tend to be

more impulsive, pleasure and stimuli seeking, and less paralyzed by concerns with

future consequences (Cassin and von Ranson 2005). Positive reinforcers or rewards

promote selected behaviors, induce subjective feelings of pleasure and other posi-

tive emotions, and maintain stimulus–response associations (Thut et al. 1997).

Negative reinforcement also plays an essential role by encouraging avoidance or

withdrawal behavior, as well as production of negative emotions.

4.1 Altered DA Function in AN and BN

Animal studies indicate that dopamine (DA) in the striatum plays a key role in the

optimal response to reward stimuli (Delgado et al. 2000; Montague et al. 2004;

Schultz 2004). In fact, genetic, pharmacologic, and physiologic data (Kaye 2008;

Bergen et al. 2005; Lawrence 2003; Friederich et al. 2006) show that ill and REC

individuals with AN have altered striatal DA function. DA disturbances could

contribute to an altered modulation of appetitive behaviors, as well as symptoms

of anhedonia, dysphoric mood, and increased motor activity (Halford et al. 2004;

Volkow et al. 2002). Because fewer DA studies have been done in BN individuals,

it remains uncertain whether they have trait-related DA disturbances (Jimerson

et al. 1992; Kaye et al. 1990). In terms of positron emission tomography (PET)

studies, our group found that REC AN had increased [11C]raclopride BPND in the

anterior ventral striatum (AVS) (Frank et al. 2005). Because PET measures of [11C]

raclopride binding are sensitive to endogenous DA concentrations (Drevets et al.

2001), elevated [11C]raclopride BPND could indicate either a reduction in intrasy-

naptic DA concentrations or an elevation of the density and/or affinity of the D2/D3

receptors.
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4.2 BOLD Response to Reward and Punishment
Is Altered in AN

Human neuroimaging studies show that a highly interconnected network of brain

areas including OFC, mPFC, amygdala, striatum and DA mid-brain is involved in

reward processing of both primary (i.e., pleasurable tastes) (Berns et al. 2001;

McClure et al. 2003) and secondary (i.e., money) reinforcers (O’Doherty 2004;

Breiter et al. 2001; Delgado et al. 2000; Gehring and Willoughby 2002; Montague

et al. 2004). These regions code stimulus–reward value, maintain representations of

predicted future reward and future behavioral choice, and may play a role in

integrating and evaluating reward prediction to guide decisions. In animals, DA

modulates the influence of limbic inputs on striatal activity (Goto and Grace 2005;

Montague et al. 2004; Schultz 2004; Yin and Knowlton 2006) and mediates the

“binding” of hedonic evaluation of stimuli to objects or acts (“wanting” response)

(Berridge and Robinson 1998). It has been postulated that dorsal striatum is

engaged by real or perceived stimulus–response outcomes, with DA projections

modulating this behavior (Tricomi et al. 2004; O’Doherty et al. 2004).

Because of the DA findings in REC AN individuals (Bergen et al. 2005; Frank

et al. 2005; Kaye et al. 1999), our group (Wagner et al. 2007, 2009) performed an

event-related fMRI study using a variation of a well-characterized “guessing-

game” protocol (Delgado et al. 2000), which is known to activate the AVS with a

differential response to positive and negative feedback in healthy volunteers.

Importantly, REC AN (Wagner et al. 2007) and REC BN individuals (Wagner

et al. 2009) failed to show a differential AVS response to positive and negative

monetary feedback when compared to CW, suggesting that both groups have an

impaired ability to identify the rewarding/emotional significance of a stimulus. This

shared-trait disturbance of the modulation of reward and emotionality may create a

vulnerability for dysregulated appetitive behaviors. In contrast, fMRI studies con-

sistently show that ill and REC AN individuals have increased activity in cognitive

neural circuits (Zastrow et al. 2009; Wagner et al. 2007), whereas ill and REC BN

individuals have diminished or impaired activity in these regions (Marsh et al.

2009; Schienle et al. 2008; Wagner et al. 2009), consistent with enhanced higher

order inhibitory function in AN and reduced inhibition in BN. We hypothesize that

AN individuals are able to inhibit appetite and have extraordinary self-control,

because they have exaggerated dorsal cognitive circuit function, whereas BN

individuals are vulnerable to overeating when they get hungry, because they have

less ability to control their impulses.

4.3 Implications

In summary, AN individuals may have both an impaired ability to identify the

emotional significance of a stimulus and an enhanced ability to plan or foresee

consequences. Because of AVS pathway dysregulation, REC AN individuals may
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focus on long-term consequences rather than an immediate response to salient

stimuli. In fact, AN individuals tend to have an enhanced ability to pay attention

to detail or use a logical/analytic approach, but exhibit worse performance for

global strategies in the here and now (Lopez et al. 2008; Strupp et al. 1986). In

particular, the most anxious AN individuals may respond in an overly “cognitive”

manner to both negative and positive stimuli. Consequently, they may not be able to

process information about rewarding outcomes of an action and may have impaired

ability to identify emotional significance of the stimuli (Phillips et al. 2003). This

may provide an important, new understanding of why it is so difficult to motivate

AN individuals to engage in treatment since they may not be able to appreciate

rewarding stimuli (Halmi et al. 2005).

5 The Neurocircuitry of AN

Based on the above processes and associated brain areas, our group (Kaye et al.

2009) has begun to assemble a neural systems processing model of AN. Specifi-

cally, top-down (cortical) amplification of anticipatory signals related to food such

as ghrelin, or stimuli associated with satiety signals (integrated within the insula),

could trigger behavioral strategies for avoiding exposure to food. These anticipa-

tory interoceptive stimuli are associated with an aversive body state that resembles

some aspects of the physiological state of the body after feeding. This abnormal

response to food anticipation might function as a learning signal to further increase

avoidance behavior, i.e., to engage in activities aimed at minimizing exposure to

food. Specifically, stimuli that predict food intake, such as displays of food or food

smells, could generate a “body prediction error,” resulting from comparing the

current body state with the anticipated body state (e.g., feeling satiated) after

feeding. This prediction error would generate a motivational or approach signal

in healthy individuals but might lead to an avoidance signal in AN individuals. The

dorsal and ventral neurocircuits described earlier might be involved in these

processes: The ACC, one of the projection areas of the insular cortex, is important

in processing the conflict between available behaviors and outcomes, e.g., “shall I

eat this cake and satisfy my hunger now or shall I not eat this cake and stay thin?”

(Carter et al. 2000). The OFC, another projection area of the anterior insular cortex

(Ongur and Price 2000), can dynamically adjust reward valuation based on the

current body state of the individual (Rolls 1996). The DPLFC can switch between

competing behavioral programs based on the error signal it receives from the ACC

(Kerns et al. 2004).

Although we do not propose that AN is an insula-specific disorder, we speculate

that an altered insula response in response to food-related stimuli is an important

component of this disease. If this is indeed the case, one would need to determine

whether insula-specific interventions, such as sensitization or habituation of intero-

ceptive sensitivity via real-time monitoring of the insular cortex activation, might

help. Moreover, computational models such as those that have been proposed for
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addiction (Redish 2004) might provide a theoretical approach to better understand

the complex pathology of this disorder.

Within the framework of the ventral and dorsal neurocircuits described above,

there are also potential explanations for other core components of clinical dysfunc-

tion in AN. Negative affect – such as anxiety and harm avoidance – and anhedonia

could be related to difficulties in accurately coding or integrating positive and

negative emotions within ventral striatal circuits. There is considerable overlap

between circuits that modulate emotionality and the rewarding aspects of food

consumption (Volkow and Wise 2005). Food is pleasurable in healthy individuals

but feeding is anxiogenic in AN patients, and starvation might serve to reduce

dysphoric mood states. The neurobiologic mechanisms responsible for such beha-

viors remain to be elucidated, but it is possible that an enhancement of 5-HT-related

aversive motivation and/or diminished DA-related appetitive drives (Daw et al.

2002; Cools et al. 2008) contribute to these behaviors.

Finally, it is possible that perfectionism and obsessional personality traits are

related to exaggerated cognitive control by the DLPFC. The DLPFC might develop

excessive inhibitory activity to dampen information processing through reward

pathways (Chambers et al. 2003). Alternatively, increased activation of cognitive

pathways might compensate for primary deficits in limbic function: when there are

deficits in emotional regulation, overdependence upon cognitive rules is a reason-

able strategy of self-management (Connan et al. 2003).

6 Conclusions and Future Directions

AN is thought to be a disorder of complex etiology, in which the genetic, biological,

psychological, and sociocultural factors, and interactions between them, seem to

contribute significantly to susceptibility (Connan et al. 2003; Jacobi et al. 2004;

Lilenfeld et al. 2006; Stice 2002). Because no single factor has been shown to be

either necessary or sufficient for causing AN, a multifactorial threshold model

might be the most appropriate model (Connan et al. 2003). Typically, AN begins

with a restrictive diet and weight loss during teenage years, which progresses to an

out-of-control spiral. Thus, individuals might cross a threshold in which a premor-

bid temperament, interacting with stress and/or psychosocial factors, progresses to

an illness with impaired insight and a powerful, obsessive preoccupation with

dieting and weight loss. Adolescence is a time of profound biological, psychologi-

cal, and sociocultural change, and it demands a considerable degree of flexibility to

successfully manage the transition into adulthood. Psychologically, change might

challenge the perfectionism, harm avoidance, and rigidity of those at risk for AN

and thus fuel an underlying vulnerability.

We propose that somatic, autonomic, and visceral information is aberrantly

processed in people who are vulnerable to developing AN. Brain changes asso-

ciated with puberty might further challenge these processes. For example, orbital

and DLPFC regions develop greatly during and after puberty (Huttenlocher and
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Dabholkar 1997), and increased activity of these cortical areas might be a cause of

the excessive worry, perfectionism, and strategizing in AN patients. It is possible

that, in AN patients, hyperactivity of cognitive networks in the dorsal neurocircuit

(e.g., DLPFC to dorsal striatum) directs motivated actions when the ability of the

ventral striatal pathways to direct more “automatic” or intuitive motivated

responses is impaired. Another possibility is that in AN patients (otherwise ade-

quate) limbic–striatal information processing in the ventral circuit is too strongly

inhibited by converging inputs from cognitive domains such as the DLPFC and the

parietal cortex.

It is possible that such trait-related disturbances are related to altered mono-

amine neuronal modulation that predates the onset of AN and contributes to

premorbid temperament and personality symptoms. Specifically, disturbances in

the 5-HT system contribute to a vulnerability for restricted eating, behavioral

inhibition, and a bias toward anxiety and error prediction, whereas disturbances

in the DA system contribute to an altered response to reward. Several factors might

act on these vulnerabilities to cause the onset of AN in adolescence. First, puberty-

related female gonadal steroids or age-related changes might exacerbate 5-HT and

DA system dysregulation. Second, stress and/or cultural and societal pressures

might contribute by increasing anxious and obsessional temperament. Individuals

find that restricting food intake is powerfully reinforcing because it provides a

temporary respite from dysphoric mood. People with AN enter a vicious cycle –

which could account for the chronicity of this disorder – because eating exagge-

rates, and food refusal reduces, an anxious mood.

AN has the highest mortality rate of any psychiatric disorder. It is expensive to

treat and we have inadequate therapies. It is crucial to understand the neurobiologic

contributions and their interactions with the environment, in order to develop more

effective therapies. Thus, future imaging studies should focus on characterizing

neural circuits, their functions, and their relationship to behavior in AN patients.

Genetic studies might shed light on the complex interactions of molecules within

these neural circuits. Finally, prospective and longitudinal studies should focus on

identifying the neurobiologic traits and external factors that create a susceptibility

for developing AN.
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