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ABSTRACT

Objective: Genetic, pharmacologic, and

physiological data suggest that individu-

als with anorexia nervosa (AN) have

altered striatal dopamine (DA) function.

Method: We used an amphetamine chal-

lenge and positron emission tomography

[11C]raclopride paradigm to explore DA

striatal transmission in 10 recovered (REC)

AN compared with 9 control women (CW).

Results: REC AN and CW were similar for

baseline, postamphetamine [11C]raclopride

binding potential (BPND) and change (D) in
BPND for all regions. In CW, ventral striatum

D BPND was associated with euphoria (r 5

20.76; p 5 0.03), which was not found for

REC AN. Instead, REC AN showed a signifi-

cant relationship between anxiety and D
BPND in the precommissural dorsal caudate

(r5 20.62, p5 0.05).

Discussion: REC AN have a positive

association between endogenous DA

release and anxiety in the dorsal cau-

date. This finding could explain why

food-related DA release produces anxiety

in AN, whereas feeding is pleasurable in

healthy participants. VVC 2011 by Wiley

Periodicals, Inc.
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mine; dopamine; anxiety; positron
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Introduction

Anorexia nervosa (AN) is a disorder of unknown etiol-
ogy, which invariably has an onset during adolescence
in women.1 AN is characterized by the relentless
pursuit of thinness, substantial weight loss, obsessive
fears of being fat, aberrant eating behaviors, distur-
bances of mood, and frenetic exercise.1 Large-scale
community-based twin studies have shown that 50 to
80% of the variance in eating disorders (EDs)2–4 can

be accounted for by genetic factors. Considerable evi-
dence suggests that AN personality and temperament
traits, such as anxiety, harm avoidance, perfectionism,
and obsessionality, are heritable and confer liability to
the development of AN. Such traits occur in child-
hood before the onset of AN, persist after recovery,
and are elevated in unaffected family members.5–8

Genetic, pharmacologic, and physiological data9

suggest that individuals with AN have altered striatal
dopamine (DA) function which, in theory, may play
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a role in symptoms, such as altered feeding behav-
ior, anhedonia, dysphoric mood, and increased
motor activity.10,11 It is important to emphasize that
DA disturbances may be traits that contribute to a
vulnerability to AN, rather than simply emerging
secondary to malnutrition. First, there is altered fre-
quency of the functional polymorphisms of D2 re-
ceptor genes.12 Underweight AN have impaired
visual discrimination learning,13 a task thought to
reflect DA signaling function, and a generalized fail-
ure to activate the appetitive motivational system in
a startle task.14 DA disturbances persist after individ-
uals recover (e.g., normal weight, nutrition, and
menses) from AN. For example, recovered (REC)
AN, particularly restricting type AN, have less homo-
vanillic acid (HVA), a DA metabolite, in cerebrospi-
nal fluid (CSF) than control women (CW).15

Recent advances in imaging technology permit a
more direct examination of DA function in humans.
Specifically, positron emission tomography (PET) and
the radioligand [11C]raclopride can be used to assess
striatal DA D2/D3 receptor binding. Studies of REC
AN have found increased binding of DA D2/D3 recep-
tors at baseline in the anterior ventral striatum,16,17 a
region that contributes to optimal responses to
reward stimuli.18–20 Moreover, indices of greater anxi-
ety were associated with baseline dorsal caudate and
dorsal putamen [11C]raclopride binding.16,17

[11C]raclopride binding is influenced by endoge-
nous DA; therefore, elevated anterior ventral stria-
tum [11C]raclopride binding could indicate either an
elevation of the density and/or affinity of the D2/D3
receptors or a reduction in intrasynaptic DA concen-
trations. One way to further characterize endoge-
nous DA function is to assess the decrease in striatal
[11C]raclopride binding that occurs after administra-
tion of drugs, such as amphetamine, that stimulates
DA release. It has been shown that the decrease of
[11C]raclopride binding following amphetamine-
induced DA release is a reliable measure of endoge-
nous DA transmission21,22 in striatal subdivisions
(limbic, associative, and sensorimotor striatum)23,24

and can be used as a noninvasive measure of the
change in DA induced by the challenge. Thus, the
amphetamine challenge PET [11C]raclopride para-
digm was used to further explore altered DA striatal
transmission in REC AN compared with CW.

Method

Subject Selection

Ten REC AN (5 restricting type AN, 5 binge-purge type

AN) women were recruited. Nine healthy CW were

recruited through local advertisements. REC AN had to

meet the following criteria over the past year: (1) main-

tain a weight above 90% of average body weight; (2) have

regular menstrual cycles; (3) have not binged, purged, re-

stricted food intake or exercised excessively; (4) not used

psychoactive medications, such as antidepressants; and

(5) no current alcohol or drug abuse/dependence. CW

had no history of any psychiatric, serious medical, or

neurological illness. Details on sample selection and

assessment are described elsewhere.5,16,25–29 The PET

imaging was performed during the first 10 days of the fol-

licular phase of the menstrual cycle for all participants.

All participants were allowed to eat up until 2.5 hours

before the first scan and were not allowed to drink caffei-

nated beverages before or during the study. All partici-

pants were nonsmokers.

This study was conducted according to the institutional

review board regulations of the University of Pittsburgh,

and all participants gave written informed consent.

PET Protocol

The radiosynthesis of [11C]raclopride for human injec-

tion was performed as previously described by Halldin

et al.30 PET outcome measures described in this article are

consistent with the recommended consensus nomencla-

ture for in vivo imaging of reversibly binding radioligands.31

The PET imaging was conducted on an ECAT EXACT

HR1 scanner consistent with previously described image

acquisition protocols.32,33 In brief, after completion of a

transmission scan (�10 min) for attenuation correction

of the emission data, the first PET scan was acquired fol-

lowing a slow intravenous bolus administration (for 20

seconds) of [11C]raclopride. On the basis of a previous

report,34 the maximal injected mass for [11C]raclopride

was restricted to 6 lg to be at tracer dose (less than 5%

receptor occupancy). Emission data were collected in

three-dimensional (3D) mode for 60 min.

Thirty minutes following the first scan with

[11C]raclopride, the participant received 0.5 mg kg21 of

oral amphetamine, as used in other PET studies.33,35–38

The postamphetamine [11C]raclopride scan was per-

formed 3 hours after the administration of amphetamine.

In the postamphetamine condition, amphetamine

plasma levels were measured in two venous samples

obtained at 0 and 30 min relative to the PET scan. Assess-

ment of behavioral responses were conducted before and

after PET scans, in which participants completed a symp-

tom-rating visual analog scale (VAS) prebaseline PET, pre-

amphetamine, and then at 30 min intervals assessing sev-

eral states: ‘‘happy,’’ ‘‘anxious,’’ ‘‘energetic,’’ ‘‘restless.’’39

Image Analysis

A 3D spoiled gradient recalled sequence magnetic res-

onance image was acquired by using a Signa 1.5T mag-
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netic resonance imaging (MRI) scanner (GE Healthcare,

Little Chalfont, Buckinghamshire, UK) for coregistration

of the PET data. PET data were reconstructed using fil-

tered back-projection and standard corrections applied

that included those for photon attenuation, scatter, and

radioactive decay.32,33 Reconstructed image files were

then processed with MEDx image analysis software

(Sensor Systems, Sterling VA) and SPM software (www.

fil.ion.ucl.ac.uk/spm). Frame-to-frame motion correction

for head movement and magnetic resonance-PET image

alignment were performed by using a mutual informa-

tion algorithm implemented in SPM software.

Time-activity curves were generated for the following

regions of interest (ROIs): The striatum was divided into

five anatomic ROIs and three functional subdivisions

(limbic, associative, and sensorimotor) as outlined by

Martinez et al.24 The anatomic ROIs, that were traced on

coronal planes of each subject’s MRI, included the ven-

tral striatum (VST), the dorsal caudate rostral to the ante-

rior commissure (AC) (precommissural dorsal caudate

[preDCA]), the dorsal putamen rostral to the AC (pre-

commissural dorsal putamen [preDPU]), the caudate

caudal to the AC (postcommissural caudate [postCA])

and the putamen caudal to the AC (postcommisural

putamen [postPU]) according to the criteria by Mawlawi

et al.34 The striatum (STR) as a whole was derived as a

spatially weighted average of the five ROIs. Activity from

the left and right regions were averaged. The cerebellum

was subsampled in 15 consecutive coronal MRI slices

caudal to the cerebellar peduncle and used as a reference

region using previously described methods.32,33 The lim-

bic striatum (LST) comprised VST; the associative stria-

tum (AST) comprised the spatially weighted average of

the preDCA, preDPU and postCA; the sensorimotor stria-

tum (SMST) comprised the postPU (for details see Marti-

nez et al.24).

Analysis of the PET data was performed using the sim-

plified reference tissue method40 using the cerebellum

time activity curve as an input function. This reference

tissue method has been shown to be an appropriate

model for quantifying [11C]raclopride data in humans

without arterial input function. The outcome measure

derived from this analysis is binding potential

(BP) Nondisplaceable tissue uptake (ND). BPND (unitless) is equal

to fNDBavail/KD where Bavail is D2 receptor density avail-

able to bind radioligand in vivo, KD is the in vivo affinity

of [11C]raclopride for D2 receptors, and fND is the free

fraction in nondisplaceable compartment.31

Statistical Analysis

The primary outcome measure of this study was

change (D) in BPND (defined as the difference between

the [11C]raclopride BPND at baseline and postamphet-

amine treatment normalized to the baseline BPND and

expressed as a percentage). Differences between groups

were assessed via unpaired t test, with diagnosis group as

the independent factor and regional D BPND as depend-

ent variable. Effect sizes, using Cohen’s d,41 were calcu-

lated. Relationships between the PET data and behavioral

responses [peak and maximum change (between base-

line and peak) of VAS variables were chosen respectively]

of REC AN and CW women were analyzed with Pearson

Product-Moment correlation coefficient. A repeated

measures (RM) analysis of variance (ANOVA) was used

for the behavioral changes over time after the ampheta-

mine challenge. A two-tailed probability value of p\0.05

was chosen as level of significance for all statistical tests.

Results

Demographics

CW and REC AN were similar in age (CW: 28.2 6
4.6; REC AN: 26.3 6 5.5; p 5 0.45).

However, REC AN had lower current BMI com-
pared with CW (CW: 22.6 kg m22 6 2.0; REC AN:
20.9 kg m22 6 1.0; p5 0.04).

Baseline Scan Parameters

The mean injected dose, mass, and specific activ-
ity at the time of injection for the baseline and
postamphetamine condition for CW and REC AN
are shown in Table 1. No significant differences
were observed between the baseline and postam-
phetamine condition in injected radiation dose in
REC AN and CW. In REC AN only, injected mass for
[11C]raclopride in the postamphetamine condition
was significantly higher compared with the base-
line condition, whereas the specific activity was
lower in the postamphetamine condition com-
pared with the baseline condition.

Amphetamine Plasma Analysis

No significant differences in the plasma amphet-
amine levels were observed between REC AN and
CW (Table 1). The amphetamine plasma levels
were relatively stable throughout the duration of
the postamphetamine scan.

ROI Analysis: Binding Potential BPND

Groups were similar for baseline and postam-
phetamine measures of BPND in the VST, preDCA,
postCA, preDPU, and postPU (Table 2). For the
VST, REC AN had less D BPND (9.4 6 5.8) than did
CW (12.4 6 3.9). Four of the 10 REC AN had values
below the range of CW. However, this finding was
not significant (t 5 1.30, p 5 0.21). Restricting type
and binge-purge type AN were similar for baseline,
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postamphetamine BPND, and D BPND for all ROIs
(data not shown) and were consequently analyzed as
one group. In CW and REC AN, there was no correla-
tion between BMI and D BPND in any of the ROIs.

Relationship of DBPND With Behavioral

Response to Amphetamine

For CW, VST DBPND was associated with peak eu-
phoria (r 5 20.76; p 5 0.03) (see Fig. 1). This rela-
tionship was not found for REC AN. Instead, REC
AN showed a significant relationship between max-
imum change in anxiety and DBPND in the preDCA
(r 5 20.62, p 5 0.05) (see Fig. 1), as well as a signif-
icant increase of anxiety after amphetamine
administration compared with CW [F(1,141) 5
6.51; p 5 0.01] (see Fig. 2). No significant correla-
tions were found for the VAS variables ‘energetic’
and ‘restless’ in REC AN and CW (peak and maxi-

mum change respectively) in any of the ROIs (data
not shown).

Discussion

The major finding in this study was that DA release
in the preDCA in REC AN was associated with
greater anxiety. It is important to emphasize that
this finding was different than in CW who had a
stimulant induced euphoria associated with endog-
enous VST DA release. Moreover, the CW response
to amphetamine is similar to other studies in con-
trols that have found relationships between stimu-
lant-induced striatal DBPND and euphoria, particu-
larly for the VST.24,42,43 For example, Drevets
et al.,44 using a similar PET [11C]raclopride amphet-
amine paradigm, found VST DBPND correlated with

TABLE 1. Baseline scan parameters and plasma analysis

CW (n5 9) REC AN (n5 10)

Baseline Postamphetamine Baseline Postamphetamine

Injected dose (mCi) 10.26 0.7 10.36 0.6 10.26 0.6 10.4 6 0.5
Specific activity (Ci/mmol) 1483.36 516.0 1152.26 326.2 1709.06 273.8* 1166.06 356.6*
Injected mass (lg) 2.66 0.8 3.46 1.3 2.16 0.4* 3.42 6 1.2*
Plasma amphetamine (0 min, ng3 ml21) – 65.4 6 7.7 (6) – 57.36 8.6 (8)
Plasma amphetamine (30 min, ng3 ml21) – 59.1 6 7.2 (7) – 55.86 6.3 (8)

* p\ 0.05, unpaired t test, baseline compared with postamphetamine condition; plasma amphetamine levels are relative to the postamphetamine
scan; the numbers in parentheses show the number of available data.

TABLE 2. [11C]raclopride binding potential (BPND) results

CW (n5 9) REC AN (n 5 10)

ROI Condition Mean SD Mean SD P Effect size Cohen’s d

LST VST Baseline BPND 2.28 0.26 2.35 0.25 0.58 20.28
postamphetamine BPND 2.00 0.25 2.12 0.21 0.26 20.52

D BPND 212.35% 3.88% 29.38% 5.78% 0.21 20.60
AST Baseline BPND 2.63 0.24 2.77 0.16 0.14 20.69

postamphetamine BPND 2.40 0.24 2.53 0.13 0.15 20.68
D BPND 28.48% 3.37% 28.43% 4.30% 0.98 20.01

– preDCA Baseline BPND 2.60 0.25 2.69 0.16 0.35 20.43
postamphetamine BPND 2.42 0.26 2.52 0.13 0.29 20.49

D BPND 27.13% 4.31% 26.41% 3.27% 0.69 20.19
– postCA Baseline BPND 2.06 0.21 2.06 0.24 0.99 0

postamphetamine BPND 1.87 0.24 1.83 0.24 0.75 0.17
D BPND 29.45% 3.85% 210.66% 10.08% 0.74 0.16

– preDPU Baseline BPND 3.06 0.34 3.25 0.19 0.15 20.70
postamphetamine BPND 2.76 0.29 2.93 0.11 0.10 20.79

D BPND 29.74% 4.64% 29.69% 5.00% 0.98 20.01
SMST postPU Baseline BPND 3.36 0.31 3.46 0.18 0.43 20.40

postamphetamine BPND 2.78 0.33 2.83 0.12 0.66 20.21
D BPND 217.31% 5.44% 217.95% 5.17% 0.80 0.12

STR Baseline BPND 2.77 0.21 2.93 0.17 0.10 20.84
postamphetamine BPND 2.45 0.22 2.57 0.12 0.14 20.69

D BPND 211.80% 4.02% 212.08% 4.72% 0.89 0.06

CW, control women; REC AN, individuals recovered from anorexia nervosa; BPND, binding potential, ROI, region of interest; LST, limbic striatum; VST, an-
terior ventral striatum; AST, associative striatum; preDCA, precommissural dorsal caudate, postCA, postcommisural dorsal caudate; preDPU, precommissu-
ral dorsal putamen; postPU, postcommisural dorsal putamen, SMST, sensorimotor striatum; STR, striatum as a whole.

BAILER ET AL.

266 International Journal of Eating Disorders 45:2 263–271 2012



the euphoric response to amphetamine. However,
subjective variability in the mood-enhancing
effects of amphetamine has been previously
described.45–47 In studies using a preference proce-
dure, it has been observed that preference for am-
phetamine over placebo was associated with a
unique pattern of subjective effects. After ampheta-
mine administration, the ratings of amphetamine
choosers increase on scales measuring vigor, ela-
tion, arousal, and positive mood and decrease on
scales measuring fatigue and sedation.46,47 In con-
trast, amphetamine nonchoosers report no effects,
paradoxical sedative effects of amphetamine or
increased dysphoria. The percentage of at least

some positive effect versus negative only effect has
been shown to be 70% versus 30%, respectively,
when participants were designated as choosers
(38%), nonchoosers (30%) or as neithers (partici-
pants who chose inconsistently) (32%).47 Nontreat-
ment oriented previous studies have attributed this
variability to various factors including expect-
ancy,48 personality factors,49 as well as gender, hor-
mone levels, and menstrual cycle phase.50

It is possible that the anxiety in REC AN in part
was related to anxious arousal at the prospect of an
amphetamine ingestion in a group of subjects who
are rigid and inhibited by nature. However, an asso-
ciation between anxiety and dorsal caudate DA
function in REC AN has been previously observed
by our group. A positive correlation between base-
line [11C]raclopride binding in the dorsal caudate
and harm avoidance, a measure of anxiety and be-
havioral inhibition, in two studies of REC AN par-
ticipants but not in CW.16,17 In addition, using fMRI
and a monetary choice task,51 our group found
positive relationships between baseline measures
of trait anxiety and activation in caudate regions
for both losses and wins in REC AN, but not in CW.

Considered together, these data may shed light
on neural circuit dysregulation that might explain
the puzzling core symptoms of AN. Individuals
with AN are often anxious, inhibited, and harm
avoidant. They have long been noted to be anhe-
donic and ascetic, able to sustain self-denial of
food, as well as most comforts and pleasures in life.
These data raise the provocative possibility that AN
individuals have altered function of brain mecha-
nisms that code pleasure and reward. Moreover,

FIGURE 1. Relationships between (left panel) change in [11C]raclopride binding potential (BPND) for CW in the ventral
striatum (VST) and peak euphoria; and change in [11C]raclopride BPND for REC AN in the precommissural dorsal caudate
(preDCA) and maximum change anxiety (change between baseline and peak) (right panel); VAS, visual analog scale.

FIGURE 2. Participants assessed by Visual Analog Scale
(VAS) self-report of anxiety (0 to 10) at baseline (0) before
amphetamine administration, and then at 30 min after
amphetamine; CW, control women; REC AN, individuals
recovered from anorexia nervosa. [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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they have a bias toward harm avoidant tempera-
ment and anxious response to salient stimuli, and a
diminished or absent ability to experience pleas-
ure.

Most people find food to be highly pleasurable.

However, clinical observations52–54 suggest that

eating makes individuals with AN anxious, whereas
dietary restraint functions to reduce anxiety in AN.

Ingestion of palatable food is associated with stria-
tal endogenous DA release.55 If AN experience en-

dogenous DA release as anxiogenic, rather then
hedonic, it may explain their pursuit of starvation,

because it may be an effective means of diminish-
ing such feelings in AN individuals. Although con-

jectural, these findings may further help explain

the beneficial effect of atypical antipsychotics such
as olanzapine, which has DA D2 antagonistic prop-

erties, and was shown to be significantly better
than placebo in terms of promoting eating and

weight gain in AN in a recent controlled trial.56

The physiological mechanisms underlying this

anxious behavior remain to be elucidated. In the
past decade, considerable progress has been made

in understanding mesolimbic reward processing.
For example, the phasic activity of DA-releasing
substantia nigra (SN)/ventral tegmental area (VTA)

neurons is a response to unexpected rewards and
reward-predicting cues (reward anticipation).57

The ventral striatum/nucleus accumbens is a

major target of these midbrain dopaminergic pro-
jections. In controls, a positive correlation has

been shown between neural activity of the SN/VTA
during reward anticipation and reward-related
[11C]raclopride displacement as an index of DA

release in the VST.58

This is the first study to use the amphetamine
challenge paradigm and [11C]raclopride PET in AN.
This study did not find a difference in [11C]raclopr-
ide displacement, as a measure of DA release,
between REC AN and CW. Because of funding con-
straints, sample size was small and may have
lacked power to show differences. This study was
completed to establish feasibility. Previous data
from our group has shown that REC AN have a dis-
turbed function of VST and dorsal caudate regions
compared with CW.51 Compared with CW, the REC
AN women showed impaired VST discrimination of
positive and negative monetary feedback, suggest-
ing they cannot code or distinguish salient feed-
back. Moreover, compared with CW, the REC AN
group generated a large activation in the dorsal
striatum/dorsal caudate, and in the ‘cognitive’ cort-
ical projection regions, specifically the dorsal lat-
eral prefrontal cortex (DLPFC) and the parietal cor-

tex, that was associated with baseline anxious
mood. Importantly, a recent fMRI study using a set-

shifting task, showed relatively similar findings
among underweight AN. That is, impaired behav-

ioral response shifting was associated with hypoac-

tivation in the ventral anterior cingulate-VST-tha-
lamic loop, but a predominant activation of fronto-

parietal networks, suggesting increased effortful
and supervisory cognitive control.59

Several studies from our group have shown that

it is mainly the restricting type AN that have

increased baseline VST [11C]raclopride BPND
16,17

compared with CW. We have not observed a differ-

ence in VST [11C]raclopride BPND in REC binge-

purge type AN when compared with CW. Similarly,

only REC restricting type AN (and not REC binge-

purge type AN) had diminished CSF HVA compared

with CW.15 Together, these data suggest that only

the restricting type AN has altered VST DA func-

tion. As noted, the sample size of REC AN and CW

was small and possibly underpowered. Importantly,

this study of REC AN consisted of both AN sub-

types, restricting and binge-purge type, which

could have masked underlying differences regard-

ing baseline VST BPND and D BPND between REC

AN and CW. However, a comparison between the

two subtypes of AN for baseline BPND and DBPND

in this study showed similar results, and did not

differ from CW, respectively.

In terms of the preDCA, we found no difference
between REC AN and CW for baseline or D BPND

values which is in line with our previous studies16,17

regarding baseline BPND in the dorsal caudate.
Nonhuman primate studies have shown that the
magnitude of reduction in [11C]raclopride binding,
following amphetamine administration, was two-
fold greater in the VST compared with the dorsal
caudate.60 The preferential sensitivity of the VST to
the DA releasing effects of amphetamine has been
confirmed in humans.24,44,61 Thus, the ampheta-
mine challenge paradigm may not be able to char-
acterize differences in DA function in the dorsal
caudate. Several mechanisms may account for VST
and dorsal caudate regional differences.24 For
instance, the VST and dorsal caudate differ as to
the relative balance of D2 and D3 receptors (the af-
finity of DA for D3 receptors is higher then D2
receptors) and differ in DA transporter expression.
The amphetamine challenge does not directly mea-
sure DA release but rather its impact on
[11C]raclopride binding. Regional differences in the
potency of DA to reduce [11C]raclopride binding
(postsynaptic factors) or regional differences in
amphetamine-induced DA release (presynaptic
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factors) potentially account for regional differences
in D BPND.

24

In terms of limitations, we used oral ampheta-
mine in a dose of 0.5 mg kg21. At this dose, the
prominent effect of amphetamine is a substantial
release of DA,38 although effects on other monoa-
mine neurotransmitters (e.g. norepinephrine, sero-
tonin) occur as well.62 The mean displacement of
[11C]raclopride BPND in CW in our study is consist-
ent with that reported in previous studies that have
used the same paradigm (for review see33). As we
did not use an arterial line and used a reference tis-
sue method without a plasma input function for
PET analysis, we are limited to presenting BPND as
the sole outcome measure. To exclusively ascribe
changes in BPND, which is equal of fNDBavail/KD,

31

to changes in receptor parameters (Bavail/KD),
implies that nondisplaceable free fraction in the
brain (fND) is not affected by the experimental fac-
tors under study,31,33 which is a reasonable
assumption in a within-subject design.

In summary, the role that DA neurotransmission
plays in many pathological behaviors associated
with food intake, reinforcement, reward, and
hyperactivity in REC AN participants is not yet well
understood. This study showed for the first time,
that REC AN have a positive association between
endogenous DA release and anxiety in the preDCA.
This finding could shed light on why food-related
release of DA produces anxiety in AN, whereas
feeding is pleasurable in healthy individuals.
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