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Several lines of evidence suggest that a disturbance of serotonin neuronal pathways may contribute to the pathogenesis of anorexia

nervosa (AN) and bulimia nervosa (BN). This study applied positron emission tomography (PET) to investigate the brain serotonin 2A

(5-HT2A) receptor, which could contribute to disturbances of appetite and behavior in AN and BN. To avoid the confounding effects of

malnutrition, we studied 10 women recovered from bulimia-type AN (REC AN–BN, 41 year normal weight, regular menstrual cycles,

no binging, or purging) compared with 16 healthy control women (CW) using PET imaging and a specific 5-HT2A receptor antagonist,

[18F]altanserin. REC AN–BN women had significantly reduced [18F]altanserin binding potential relative to CW in the left subgenual

cingulate, the left parietal cortex, and the right occipital cortex. [18F]altanserin binding potential was positively related to harm avoidance

and negatively related to novelty seeking in cingulate and temporal regions only in REC AN–BN subjects. In addition, REC AN–BN had

negative relationships between [18F]altanserin binding potential and drive for thinness in several cortical regions. In conclusion, this study

extends research suggesting that altered 5-HT neuronal system activity persists after recovery from bulimia-type AN, particularly in

subgenual cingulate regions. Altered 5-HT neurotransmission after recovery also supports the possibility that this may be a trait-related

disturbance that contributes to the pathophysiology of eating disorders. It is possible that subgenual cingulate findings are not specific for

AN–BN, but may be related to the high incidence of lifetime major depressive disorder diagnosis in these subjects.
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INTRODUCTION

Anorexia nervosa (AN) and bulimia nervosa (BN) are
disorders of unknown etiology, which invariably have their
onset during adolescence in females. These disorders are
characterized by the relentless pursuit of thinness, obsessive
fears of being fat, and aberrant eating behaviors, such as
restrictive eating, and episodes of purging and/or binge
eating (American Psychiatric Association, 1994). The DSM-
IV recognizes several subgroups of eating disorders which

are thought to share a common vulnerability. For example,
cross-over between subtypes is common (Herzog et al,
1996) and these subtypes are cross-transmitted in families
(Kendler et al, 1995; Lilenfeld et al, 1998; Strober et al,
2000). Furthermore, these subtypes have similar cognitive
and behavioral symptoms, such as anxiety, and obsessional,
perfectionistic, and harm avoidant behaviors that occur
premorbidly and persist after recovery (Bulik et al, 1997;
Casper, 1990; Deep et al, 1995; Srinivasagam et al, 1995;
Strober, 1980).

Large-scale family and twin studies suggest that heritable
factors (Bulik et al, 1998; Klump et al, 2001) contribute to
the susceptibility to develop an eating disorder. Several lines
of evidence support the possibility that altered central
nervous system serotonin (5-HT) activity contributes to the
appetitive alterations found in AN (Blundell, 1984; Leibowitz
and Shor-Posner, 1986). Moreover, disturbed 5-HT activity
may play a role in anxious, obsessional behaviors and
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extremes of impulse control (Barr et al, 1992; Cloninger,
1987; Higley and Linnoila, 1997; Kaye, 1997; Lucki, 1998;
Mann, 1999; Soubrie, 1986). Physiologic and pharmacologic
studies show disturbances of 5-HT activity in people
who are underweight with AN (Brewerton and Jimerson,
1996; Kaye et al, 1988, 2001a; Walsh and Devlin, 1998; Wolfe
et al, 1997).

The nature of 5-HT disturbances in AN and BN has been
poorly understood due to the inaccessibility of the central
nervous system (CNS) in humans and the complexity of
5-HT neuronal activity. However, the development of new
selective tracers for the 5-HT system has made in vivo study
of 5-HT function possible with positron emission tomo-
graphy (PET). This study used PET imaging with the
radioligand [18F]altanserin to assess CNS 5-HT2A receptor
binding in humans. The 5-HT2A receptor is of interest in AN
because it has been implicated in the modulation of feeding
and mood, as well as SSRI response (Bonhomme and
Esposito, 1998; De Vry and Schreiber, 2000; Simansky, 1996;
Stockmeier, 1997). Previous studies, using other types of
brain imaging technologies, have identified potential
alterations in temporal, cingulate, and frontal regions in
AN (Ellison and Fong, 1998; Gordon et al, 2001; Gordon
et al, 1997). These regions are known to contain 5-HT2A

postsynaptic receptors (Burnet et al, 1997; Saudou and
Hen, 1994). These previous imaging studies guided our
choices of brain regions to investigate in our recovered
subjects.

This study investigated women who had recovered for
one or more years from bulimia-type AN for several
reasons. First, studies of women who have recovered from
an eating disorder avoid the confounding effects of
malnutrition on 5-HT activity. Second, some, but not all
studies, showed that a disturbance of 5-HT activity persists
after recovery from an eating disorder (Kaye et al, 1991;
O’Dwyer et al, 1996; Ward et al, 1998). Finally, certain
behaviors, such as anxiety, perfectionism, and obsession-
ality, have been found to occur premorbidly, and persist
after recovery from AN (Bulik et al, 1997; Casper, 1990;
Deep et al, 1995; Srinivasagam et al, 1995; Strober, 1980).
Together these studies raise the possibility that altered 5-HT
activity and these behavioral symptoms may be traits that
contribute to a vulnerability to develop AN–BN and are not
just secondary to malnutrition.

METHODS AND MATERIALS

In all, 10 women who had recovered from bulimia (binging–
purging)-type anorexia nervosa (REC AN–BN) were re-
cruited. Subjects were previously treated in the eating
disorders treatment program at the Western Psychiatric
Institute and Clinic (Pittsburgh, PA) or were recruited
through advertisements. All subjects underwent four levels
of screening: (1) a brief phone screening; (2) an intensive
screening assessing psychiatric history, lifetime weight, and
exercise and menstrual cycle history as well as eating
pattern for the past 12 months; (3) a comprehensive
assessment using structured and semistructured interviews;
and (4) a face-to-face interview with a psychiatrist. To be
considered ‘recovered’, subjects had to (1) maintain a
weight above 85% average body weight (Metropolitan,

1959), (2) have regular menstrual cycles; and (3) have not
binged, purged, or engaged in significant restrictive eating
patterns for at least 1 year before the study. Restrictive
eating pattern was defined as regularly occurring behaviors,
such as restricting food intake, restricting high-caloric food,
counting calories, and dieting. Additionally, subjects must
not have used psychoactive medication such as antidepres-
sants or met criteria for alcohol or drug abuse or
dependence, major depressive disorder, or severe anxiety
disorder within 3 months of the study. In total, 16 healthy
control women (CW) were recruited through local adver-
tisements. The CW had no history of an eating disorder or
any psychiatric, medical, or neurological illness. They had
no first-degree relative with an eating disorder. They had
normal menstrual cycles and had been within normal
weight range since menarche. CW were not on medication,
including herbal supplements. Both REC AN–BN and CW
were included if they were taking birth control pills. Data
have previously been reported on 11 CW subjects (Frank
et al, 2002).

This study was conducted according to local institutional
review board regulations, and all subjects gave written
informed consent. The PET imaging was performed during
the first 10 days of the follicular phase for all subjects. The
follicular phase was determined by history. Subjects were
admitted to a research laboratory on the eating disorders
unit of Western Psychiatric Institute and Clinic at 21:00 of
the day before the PET study for adaptation to the
laboratory and for psychological assessments. The PET
study was done the next day. All subjects had the same
standardized, monoamine controlled (low protein) break-
fast on the morning of the study.

Blood was drawn for assessment of b-hydroxybutyrate
(BHBA), a plasma ketone body that is relatively sensitive to
reflecting the presence of starvation (Fichter et al, 1990), as
well as for evaluation of gonadal hormone levels (estradiol,
E2). The Structured Clinical Interview for DSM-IV Axis I
Disorders (First et al, 1996) was used to assess the lifetime
prevalence of Axis I psychiatric disorders, and the
Structured Interview for Anorexia and Bulimia (Fichter
et al, 1998) to assess lifetime diagnosis of an eating disorder.
Current psychopathology was assessed with a battery of
standardized instruments including the Beck Depression
Inventory (Beck et al, 1961), the Spielberger-Trait Anxiety
Inventory (Spielberger et al, 1970), the Frost Multidimen-
sional Perfectionism Scale (Frost et al, 1990), the Eating
Disorders Inventory (EDI-2; (Garner, 1991)), the Yale–
Brown Obsessive Compulsive Scale (Y–BOCS) (Goodman
et al, 1989a, b), the Yale–Brown–Cornell Eating Disorder
Scale (YBC) (Mazure et al, 1994; Sunday et al, 1995), and the
Temperament and Character Inventory (Cloninger et al,
1994) for assessment of harm avoidance, novelty seeking,
and reward dependence.

All subjects underwent magnetic resonance (MR) imaging
prior to the PET scan on a Signa 1.5 Tesla scanner (GE
Medical Systems, Milwaukee, WI). A volumetric spoiled
gradient recall (SPGR) sequence with parameters optimized
for maximal contrast among gray matter, white matter, and
CSF was acquired as previously described (Frank et al,
2002). The SPGR MR data were coregistered to the
[18F]altanserin data. The MR data were resliced to match
the spatial orientation of the PET image data, based upon
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previously published methods (Minoshima et al, 1992;
Woods et al, 1993).

The 5-HT2A receptor antagonist, [18F]altanserin, was
synthesized according to established methods (Lemaire
et al, 1991; Price et al, 2001a, b). All subjects were scanned
on a Siemens ECAT HRþ PET scanner (CTI PET systems,
Knoxville, TN) in two-dimensional (2D) imaging mode. The
HRþ acquires 63 continuous slices over a 152-mm axial
field of view.

Subjects were positioned with the head oriented parallel
to the canthomeatal line. A softened thermoplastic mold
with generous holes for the eyes, nose, and ears was fitted
closely around the head and attached to a headholder to
minimize subject motion. A windowed transmission scan
(10–15 min) was obtained for attenuation correction of the
emission data using rotating 68Ge/68Ga rods. Prior to
radiotracer injection, a 5-ml sample of arterial blood was
collected and used to assess the level of [18F]altanserin
binding to plasma proteins, using previously published
methods (f1, free fraction) (Price et al, 1993) .

Immediately following bolus intravenous injection of
10 mCi high-specific activity (41.04 Ci/mmol) [18F]altanser-
in, dynamic emission scanning with arterial blood sampling
(input function) was performed over 90 min. The arterial
input function was determined from approximately 35
0.5-ml hand-drawn blood samples collected over the
scanning interval (including 20 samples in the initial
2 min postinjection). Blood samples were centrifuged and
the plasma radioactivity concentration measured (Cobra II,
Packard Instruments, Cleveland, OH). Additionally, 3-ml
blood samples were acquired at 2, 10, 30, 60, and 90 min
after [18F]altanserin injection and used to determine the
fraction of unmetabolized [18F]altanserin (of total plasma
radioactivity concentration) using high-performance liquid
chromatography (HPLC). Plasma data were corrected for
the presence of radiolabeled metabolites of [18F]altanserin
using the HPLC data (Lopresti et al, 1998). The PET data
were corrected for radioactive decay and scatter (Watson
et al, 1995). Image reconstruction was performed using
filtered back-projection (Hann filter); the final recon-
structed image resolution was 6.5–7.0 mm.

The scans were visually inspected for head motion and a
postprocessing correction was performed. Head motion was
determined by overlaying an MR-based brain outline on
each frame of the PET study. Motion was indicated when
the signal clearly shifted, relative to the outline, in a manner
that was not consistent with expected changes in radiotracer
distribution over time; motion tended to occur at later times
(420 min). To correct for head motion, premotion scan
frames were summed, assuming no motion during the
initial frames (o1 min) as signal to noise can be poor. A
reference frame was then chosen (a later premotion frame)
that primarily reflected the distribution of blood flow
(rather than specific binding). The summed early image and
the other individual frames were individually aligned to the
reference image using Automated Image Registration (AIR)
techniques (Woods et al, 1992).

The regions of interest (ROI) were hand drawn on the
coregistered MR images and applied to the dynamic PET
data to generate time–activity curves. The following ROIs
were selected: prefrontal cortex (Brodmann’s area [BA] 10),
medial orbital frontal cortex (BA 11), lateral orbital frontal

cortex (BA 47), mesial–temporal cortex (amygdala–hippo-
campal complex), lateral temporal cortex (BA 21), supra-
genual cingulate (BA 24/32, five planes superior to anterior
most part of genu corporis callosi), pregenual cingulate (BA
24/32, anterior to anterior most part of genu of the corpus
callosum), and subgenual cingulate (BA 25, inferior to the
genu of the corpus callosum), parietal cortex (BA 7), and
occipital cortex (BA17). We also performed ROI sampling of
the cerebellum, and this was used as the reference region
because of the low concentration of 5-HT2A receptors
(Pazos et al, 1987). The cerebellar reference region data
were assumed to be representative of the free and
nonspecifically bound radioactivity concentrations, in all
regions (Price et al, 2001a, b). The ROIs were expressed as
left and right (lateralized) values for each region, as well as
the mean of left and right values. Figure 1 shows examples
of MR and PET image data acquired at the levels of the
parietal cortex and subgenual cingulate cortex (Figure 1a)
and the corresponding PET time–activity data (Figure 1b).

For the kinetic analyses, the Logan graphical method was
applied to the sampled ROI data from 12 to 90 min (10 data
points) using the arterial input function. The regression
slope value ([18F]altanserin distribution volume, DV) for
each ROI was calculated (Logan et al, 1990). Specific 5-HT2A

receptor binding was assessed using the binding potential
(BP) measure. The BP measure is based upon the ratio of
each ROI DV value to the cerebellar DV value (DVROI/
DVCER¼DVRATIO, DVR), where BP¼DVR - 1 (Lammertsma,
2002). Although the concentration of cerebellar 5-HT2A

receptors is low, an influence on ROI-specific binding could
not be excluded. We therefore also compared the cerebellar
DV between groups.

An MR-based partial volume correction method is
routinely applied in our laboratory to correct the PET data
for the dilutional effect of expanded CSF spaces accom-
panying normal aging and disease-related cerebral atrophy
(Meltzer et al, 1999, 1996). This method was applied to the
SPGR MR data, in the present study, to investigate whether
group differences exist in regional atrophy. Each subject’s
SPGR MR image set was segmented and used to generate
binary images with pixels that corresponded to brain (1)
and nonbrain (0) (Meltzer et al, 1999). The binary images
were smoothed (point-spread-function of the PET scanner)
and the smoothed data were sampled on a ROI basis to
generate regional atrophy correction factors (0–1).

Standard statistical software packages (SAS Version 8.2
and SPSS Version 10.0) were used for all other analyses.
Comparisons between CW and recovered REC AN–BN were
made using Wilcoxon rank-sum tests with the exact
significance levels reported. The exact levels were used
due to the small sample sizes. To explore the effect of age on
the results, we also tested for group differences while
adjusting for age. This analysis was done using a linear
model with the binding potential value as the outcome and
age and group membership as predictors. Standard regres-
sion diagnostics were used to assess the sensitivity of the
model to any observation in the data set. To account for the
fact that the age relationship differed between groups for
some of the BP values, linear models including a main effect
for group, a main effect for age and an interaction between
age and group were fit separately for each region. The
interaction term was retained for the supragenual cingulate,
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right supragenual cingulate, lateral temporal cortex, right
lateral temporal cortex, and right parietal cortex. For all
other regions, a linear model was fit with age and group as
the main effect. Pearson’s correlation coefficients were also
computed and exact significance levels based on Monte
Carlo methods are reported.

A multivariate analysis of variance model (MANOVA),
with the left and right region BPs being the outcome
variables and age and group as the predictors, was also
fit to the data. The MANOVA p-value represents the test
of equality of BPs from the left and the right region
across control and REC AN–BN women. The correlation (r)

between the left and right side is also estimated as
part of this analysis and the corresponding test of
statistical significance is presented. All of these analyses
are age adjusted and include age as a predictor in the
model.

RESULTS

Demographic Variables and Behavioral Assessments

The REC AN–BN and CW women were of similar age and
had similar body mass indices (BMI) (Table 1). Subject
groups had similar plasma BHBA values, a measure of
ketone body metabolism, suggesting REC AN were not
starving. In addition, groups had similar plasma estradiol
values. The REC AN–BN subjects had significantly higher
values for eating disorder-related obsessionality (YBC-
EDS), higher total values for the Yale–Brown Obsessive–
Compulsive Scale, higher values for the EDI-2 subscale
‘drive for thinness’ (EDI-DT), and nonsignificantly higher
values in trait and state anxiety. (For further details see
Table 1).

Plasma Data

The fraction of unmetabolized [18F]altanserin in plasma was
similar between control and REC AN–BN subjects, across all
time points (2 min: CW: 0.95.70.03 REC AN–BN:
0.9570.02; 30 min: CW: 0.5770.08 REC AN–BN:
0.6070.07; 90 min: CW: 0.4170.10 REC AN–BN:
0.4270.06). No difference in protein binding was found
between the groups (f1¼ 0.029þ 0.008 for REC AN–BN vs
f1¼ 0.029þ 0.010 for control women).

ROI-Based Analysis

The [18F]altanserin cerebellar DV value was similar
(p¼ 0.48). for CW (1.30þ 0.15) and REC AN–BN
(1.32þ 0.09). The regional [18F]altanserin BP values fol-
lowed the known rank order of 5-HT2A receptor binding as
shown in Table 2 (Pazos et al, 1987). In terms of combined
ROI, we found REC AN–BN had significantly (po0.05)
reduced [18F]altanserin BP in the subgenual cingulate,
parietal cortex and a trend toward significant reduction in
the occipital cortex compared to CW (Table 2). In terms of
lateralized findings, REC AN–BN women had reduced
[18F]altanserin BP in the left subgenual cingulate, the left
parietal cortex, and the right occipital cortex. A trend
toward a reduction occurred in the left lateral temporal
cortex (see Table 2 for details). The MR-based atrophy
correction factors were not significantly different between
CW and REC AN–BN when using Mann–Whitney U-test
(data not shown). Overall, we found similar results when
comparing the partial volume corrected BP values (see
Table 3), showing additional significant differences in the
right subgenual cingulate, lateral temporal cortex, and
occipital cortex.

After correction for multiple comparisons, using
the method of false discovery rate (Benjamini and Hoch-
berg, 1995), none of our results are significant at the 0.05
level.

Figure 1 (a) Horizontal sections from coregistered SPGR magnetic
resonance (upper panel) and positron emission tomography (PET; lower
panel) images of a typical subject recovered from anorexia nervosa, bulimic
type. The PET images are summations of dynamic data acquired over 12–
90 min after [18F]altanserin injection. The PET and MR imaging sections on
the left include the left and right parietal cortex (BA 7), whereas those on
the right include the subgenual cingulate (BA 25, inferior to the genu of the
corpus callosum). Also shown are examples of the regions-of-interest that
were used to generate the PET time–activity data. (b) Examples of the
[18F]altanserin PET time–activity data that were generated for the parietal
and subgenual cingulate cortices and cerebellum of the subject described
above (a). The inset graph shows the early kinetics of the time–activity data
(0–5 min postinjection). Similar curve shapes were observed for the two
cortical regions-of-interest, whereas lower uptake and rapid clearance was
observed in the cerebellum.
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Relationship of Age With [18F]Altanserin BP

Female CW in this study were 23.5þ 3.0 years old (range
18.6–28.7 years) and female REC AN–BN were 25.2þ 3.3
years old (range 19.7–30.3 years). Despite this narrow age
range, female CW showed a negative relationship for each
ROI for age and [18F]altanserin BP (Table 4), which reached
significance in the prefrontal cortex, lateral temporal cortex,
left lateral orbital frontal cortex, left subgenual cingulate,
and right medial orbital, mesial temporal, and parietal
cortex regions. In contrast, for the REC AN–BN, few ROIs
showed a negative relationship between age and [18F]altan-
serin BP and none were significant. When slopes for these
correlations were compared, there was only a significant
difference in slopes for the right lateral temporal cortex. It is
possible that relationships between age and [18F]altanserin
BP might effect the comparison of [18F]altanserin BP
between CW and REC AN–BN women. Thus, we tested for
group differences while adjusting for age (Table 2). Overall,
group differences remained similar after age correction,
with the right occipital cortex moving from a significant
difference to a trend, and the supragenual cingulate, lateral
temporal cortex, and right lateral temporal cortex moving
from a trend to a significant difference.

The results of the MANOVA, adjusting for age and
treating the left and right sides as a multivariate outcome,
showed that there were group differences between CW and
REC subjects for the left and right sides in the subgenual
cingulate (p¼ 0.03) and in the parietal cortex (p¼ 0.07).
The results also indicated that there was no correlation
between the left and right sides in the subgenual cingulate
region (r¼ 0.06; p¼ 0.78) and that the left and right sides
were highly correlated in the parietal cortex region (r¼ 0.50;
p¼ 0.01). Other regions that exhibited high correlation
between the left and right sides include the prefrontal cortex

(r¼ 0.86; p¼ 0.0001), the lateral orbital frontal cortex
(r¼ 0.62; p¼ 0.001), the medial orbital frontal cortex
(r¼ 0.48; p¼ 0.02), the mesial temporal cortex (r¼ 0.61;
p¼ 0.001) and the occipital cortex (r¼ 0.64; p¼ 0.001).

Relationship of Demographic and Behavioral Data With
[18F]Altanserin BP

Eight subjects of the REC AN–BN had a DSM-IV (American
Psychiatric Association, 1994) history of major depressive
disorder (MDD) and five subjects had a history of
obsessive–compulsive disorder (OCD). Additionally, one
subject in the REC AN–BN group had a history of
subthreshold OCD, one subject out of this group fulfilled
criteria for social phobia. None of the REC subjects had a
history of any psychotic disorder. Subjects with comorbid
OCD did not differ in terms of [18F]altanserin BP from those
subjects without OCD. No relationships were found for
either group between [18F]altanserin BP and current BMI,
plasma BHBA, or estradiol.

REC AN–BN subjects had a positive relationship between
[18F]altanserin BP and harm avoidance (total score) in the
left subgenual cingulate (rho¼ 0.73; p¼ 0.03), left temporal
cortex (rho¼ 0.73; p¼ 0.02), and mesial temporal cortex
(rho¼ 0.70; p¼ 0.03). Harm avoidance subscale 2 showed
additional positive relationships to [18F]altanserin BP in the
occipital cortex (rho¼ 0.83; p¼ 0.01) (see also Figure 2a).
No significant relationship between harm avoidance (total
and subscale 2) and [18F]altanserin BP was found in control
women. Furthermore, negative relationships between no-
velty seeking and [18F]altanserin BP were found in REC
AN–BN in the left subgenual cingulate (rho¼�0.79;
p¼ 0.01), the pregenual cingulate (rho¼�0.77; p¼ 0.02)
and mesial temporal cortex (rho¼�0.66; p¼ 0.05). REC

Table 1 Group Comparisons of Demographic Variables and Assessment Data

CW1 (n¼16) REC AN-BN3 (n¼10)

Mean SD Mean SD U Exact sig.

Age (years) 23.5 3.0 25.2 3.3 57 0.24

Current BMI 21.6 1.3 20.9 2.2 67.5 0.52

AN onset (years of age) F F 15.2 (9) 1.6 F F

Duration of recovery (months) F F 21.4 (8) 17.9 F F

Estradiol (mmol/ml) 29.9 32.4 26.1 23.1 79.5 0.98

Beta-hydroxy-butyrate (BHBA) (mmol/l) 0.06 (15) 0.04 0.07 (8) 0.04 54 0.73

Depression (BDI) 1.6 (14) 1.6 5.6 (9) 5.8 35.5 0.08

EDI 2FDrive for Thinness (‘‘worst ever’’) 0.88 1.6 15.9 4.7 0 o0.001

Novelty seeking (TCI) 21.8 4.7 21.7 (9) 6.4 69.5 0.89

Harm avoidance (TCI) 11.8 4.3 14.7 (9) 7.9 61.5 0.56

Reward dependence (TCI) 19.6 2.0 18.9 (9) 3.2 62 0.60

State anxiety (STAI) 26.0 4.1 31.9 (9) 7.5 39 0.07

Trait anxiety (STAI) 28.8 8.2 34.9 (9) 8.2 39.5 0.07

Yale–Brown Obsessive–Compulsive Scale (Y-BOCS) 1.0 (15) 2.0 8.1 (9) 9.2 26.5 0.01

Yale–Brown–Cornell Eating Disorders Scale (YBC-EDS) 0.4 (15) 0.9 5.6 (9) 6.1 31 0.03

The numbers in parentheses indicate the number of subjects with assessment. Group comparison by Mann–Whitney U-test.
CW, healthy control women; REC AN–BN, recovered anorexic women, bulimia type; BMI, body mass index; BHBA, beta-hydroxy butyric acid; TCI, Temperament
and Character Inventory, BDI, Beck Depression Inventory; STAI, State and Trait Anxiety Inventory, EDI-2, Eating Disorder Inventory.
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AN–BN had a negative relationship between the EDI-DT
subscale and [18F]altanserin BP in the right subgenual
cingulate (rho¼�0.79; p¼ 0.01), right pregenual cingulate
(rho¼�0.79; p¼ 0.01), the lateral temporal cortex
(rho¼�0.73; p¼ 0.03), the left parietal cortex (rho¼�0.69;
p¼ 0.04) and the prefrontal cortex (rho¼�0.74; p¼ 0.02)
(see also Figure 2b).

DISCUSSION

These data replicate and extend previous studies suggesting
that a disturbance of brain 5-HT neuronal function persists
after recovery from AN. Specifically, this study suggests that
REC AN–BN women have reduced 5-HT2A receptor activity
in the left subgenual cingulate as well as in the left parietal
and the right occipital cortex.

Other studies from our group have previously reported
reduced [18F]altanserin binding in subjects recovered from
BN (Kaye et al, 2001b) and in subjects recovered from AN,
restricting type (Frank et al, 2002). The subjects in this
current paper have recovered from bulimia-type AN and
were not subjects or an ED subgroup reported in the
previous two papers. Our rationale for subdividing REC ED
subjects into three groups (AN, AN–BN, and BN) is based
on the DSM-IV categorization. In previous papers,
we reported on combined L and R regions. When
[18F]altanserin BP of combined regions is compared
between subgroups, both AN and AN–BN have reductions
in the subgenual cingulate, parietal, and occipital cortex.
Moreover, recent data from our group on a larger sample
shows that REC BN also have reduced [18F]altanserin BP in
the subgenual cingulate (unpublished data). In comparison,

Table 2 Regional [18F]Altanserin BP Between Groups

CW (n¼16) ALT BP
REC AN-BN (n¼ 10)

ALT BP
Comparison of CW
and REC AN–BN

Comparison of CW
and REC AN–BN after
age adjustment

Region of interest Mean SD Mean SD Exact sig. Sig. levela

Prefrontal cortex Combined 1.39 0.24 1.34 0.20 0.62 0.68

Left 1.41 0.25 1.36 0.22 0.70 0.75

Right 1.38 0.24 1.31 0.20 0.66 0.60

Lat. orbital frontal cortex Combined 1.23 0.27 1.25 0.33 0.55 0.91

Left 1.30 0.27 1.33 0.36 0.34 0.53

Right 1.16 0.33 1.18 0.36 0.78 0.87

Med. orbital frontal cortex Combined 1.49 0.29 1.42 0.24 0.45 0.75

Left 1.52 0.32 1.50 0.33 0.78 0.86

Right 1.45 0.30 1.38 0.30 0.55 0.66

Supragenual cingulate Combined 1.35 0.22 1.23 0.21 0.31 0.04*

Left 1.35 0.26 1.34 0.31 0.82 0.86

Right 1.32 0.28 1.12 0.34 0.24 0.06*

Subgenual cingulate Combined 1.70 0.23 1.40 0.24 0.01 0.01

Left 1.82 0.30 1.47 0.29 0.01 0.02

Right 1.54 0.29 1.31 0.38 0.11 0.09

Pregenual cingulate Combined 1.58 0.19 1.45 0.18 0.16 0.08

Left 1.62 0.27 1.52 0.35 0.57 0.37

Right 1.49 0.25 1.38 0.27 0.40 0.23

Lateral temporal cortex Combined 1.61 0.23 1.45 0.20 0.12 0.04*

Left 1.66 0.26 1.46 0.30 0.05 0.16

Right 1.56 0.24 1.44 0.27 0.36 0.04*

Mesial temporal cortex Combined 0.60 0.16 0.51 0.18 0.12 0.27

Left 0.56 0.17 0.48 0.15 0.24 0.25

Right 0.65 0.19 0.54 0.29 0.24 0.45

Parietal cortex Combined 1.57 0.20 1.40 0.13 0.04 0.05

Left 1.56 0.20 1.35 0.15 0.01 0.02

Right 1.60 0.26 1.44 0.15 0.18 0.08*

Occipital cortex Combined 1.61 0.23 1.44 0.16 0.06 0.11

Left 1.59 0.23 1.45 0.21 0.30 0.26

Right 1.64 0.25 1.41 0.19 0.03 0.06

Group comparisons by Wilcoxon rank-sum tests with exact significance levels. ALT BP, [18F]altanserin BP; CW, healthy control women; REC AN–BN, recovered
anorexic women, bulimia type; Sig., significance.
aSignificance levels marked with an * were obtained from a model that included an interaction between age of subject and diagnosis category. All reported significance
levels are two-sided.
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only REC AN have reduced [18F]altanserin BP of the mesial
temporal region and pregenual cingulate (Frank et al, 2002)
and only REC BN have reductions of the medial orbital
frontal cortex (Kaye et al, 2001b), which we have replicated
in a larger sample (unpublished data). A recent investiga-
tion of ill, underweight AN used SPECT with a 5-HT2A

receptor antagonist (Audenaert et al, 2003). They reported
that ill AN had a significant reduction of 5-HT2A receptor
activity in the left frontal cortex, the left and right parietal
cortex, and the left and right occipital cortex. It is not
certain whether the cingulate regions were investigated or
whether ill AN subjects were pure restrictors or included
any AN–BN subtypes. In summary, studies of REC and ill
AN and/or BN subjects point to a consistent reduction of
5-HT2A activity.

Few other imaging studies of REC AN/AN–BN have been
done, and subgroups have not been well defined. Single
photon computed tomography (SPECT) studies found
temporal lobe asymmetry (Chowdhury et al, 2001) as well

as hypoperfusion of bilateral temporal, parietal, occipital,
and orbitofrontal regions (Rastam et al, 2001) in weight
recovered AN.

Other studies, using PET with (18-F)-fluorodeoxyglucose
(FDG) (Delvenne et al, 1995) or SPECT (Chowdhury
et al, 2003; Gordon et al, 1997; Kuruoqlu et al, 1998;
Nozoe et al, 1995; Rastam et al, 2001; Takano et al,
2001) have investigated ‘baseline’ brain metabolism in ill
AN and reported parietal, temporal, and frontal
lobe changes in ill AN. When both regions were investi-
gated, both tended to be involved. Together, brain
metabolism studies strongly support the presence of
abnormal regional brain activity in ill and recovered AN
subjects.

Postmortem human studies and PET imaging with 5-HT
ligands show a strong inverse correlation between binding
of cortical 5-HT2A receptors and age (Cheetham et al, 1988;
Gross-Isseroff et al, 1990; Marcusson et al, 1984; Meltzer
et al, 1998; Shih and Young, 1978). In our sample of normal

Table 3 Regional [18F]Altanserin BP Between Groups After Partial Volume Correction

CW (n¼16) ALT BP REC AN–BN (n¼10) ALT BP Comparison of CW and REC AN–BN

Region of interest Mean SD Mean SD Exact sig.

Prefrontal cortex Combined 1.89 0.32 1.60 0.49 0.20

Left 1.93 0.33 1.68 0.44 0.22

Right 1.86 0.34 1.53 0.54 0.24

Lat. orbital frontal cortex Combined 1.62 0.29 1.50 0.36 0.52

Left 1.72 0.30 1.66 0.40 0.90

Right 1.51 0.37 1.37 0.42 0.45

Med. orbital frontal cortex Combined 1.76 0.28 1.64 0.40 0.55

Left 1.80 0.30 1.75 0.46 0.74

Right 1.71 0.31 1.56 0.48 0.59

Supragenual cingulate Combined 1.44 0.23 1.26 0.26 0.08

Left 1.43 0.25 1.38 0.35 0.98

Right 1.42 0.32 1.14 0.38 0.07

Subgenual cingulate Combined 1.77 0.25 1.32 0.51 0.01

Left 1.90 0.31 1.42 0.56 0.01

Right 1.61 0.31 1.22 0.58 0.04

Pregenual cingulate Combined 1.67 0.19 1.50 0.29 0.16

Left 1.72 0.24 1.57 0.38 0.34

Right 1.59 0.28 1.42 0.40 0.50

Lateral temporal cortex Combined 1.95 0.24 1.70 0.27 0.04

Left 2.04 0.30 1.78 0.33 0.05

Right 1.87 0.26 1.62 0.37 0.11

Mesial temporal cortex Combined 0.70 0.18 0.54 0.26 0.05

Left 0.65 0.19 0.48 0.24 0.07

Right 0.75 0.19 0.60 0.33 0.17

Parietal cortex Combined 1.87 0.29 1.60 0.30 0.04

Left 1.86 0.29 1.60 0.17 0.02

Right 1.88 0.34 1.60 0.44 0.22

Occipital cortex Combined 1.82 0.24 1.49 0.38 0.01

Left 1.79 0.27 1.50 0.44 0.12

Right 1.85 0.25 1.44 0.34 0.003

Group comparisons by Wilcoxon rank-sum tests with exact significance levels. ALT BP, [18F]altanserin BP; CW, healthy control women; REC AN–BN, recovered
anorexic women, bulimia type; sig., significance.
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controls, we found this inverse relationship, despite the
narrow age range (range 18.6–28.7 years old). Importantly,
the REC AN–BN in this study and the REC BN in our
previous study (Kaye et al, 2001b) fail to show age-
dependent relationships with [18F]altanserin binding. In
comparison, REC AN showed some modest relationships
between age and [18F]altanserin binding (Frank et al, 2002).
AN and BN are gender-specific disorders that invariably
begin within a narrow postpubertal age range. These data
raise the question of whether 5-HT activity in AN and BN is
dissociated from normal age-associated changes, a finding
that may offer new clues into the pathophysiologic
mechanisms contributing to eating disorders. Whether the
5-HT system becomes free-running and insensitive to
normal developmental mechanisms remains to be explored.

AN and BN are thought to share some common etiologic
factors (Klump et al, 2000). Still, a number of factors
distinguish the subgroups, such as extremes of eating

behavior and impulse control. Our studies raise the
possibility that AN and BN may share a disturbance of 5-
HT2A receptor activity of the subgenual cingulate function,
whereas regional differences in 5-HT2A receptor activity
may distinguish eating disorder subgroups after recovery.
The subgenual cingulate is thought to have a role in
emotional and autonomic response (Freedman et al, 2000)
and a disturbance of this region has been implicated in
mood disorders (Buchsbaum et al, 1997; Drevets et al, 1997,
1999; George et al, 1995; Mayberg et al, 2000, 2002; Osuch
et al, 2000; Skaf et al, 2002). Mood disturbances are
common in AN and BN, although it has been controversial
as to whether eating disorders and mood disorders are
independently or commonly transmitted in families (Lilen-
feld et al, 1998). Interestingly, subjects with AN and BN
have disturbances of energy metabolism when ill (see de
Zwaan et al (2002) for review) and persistent but mild
sympathetic alterations after recovery. Recent demonstration

Table 4 Regional [18F]Altanserin BP and Correlation With Age

CW (n¼16) REC AN-BN (n¼10) Group comparisons*

Region of interest Rho P Rho P F P

Prefrontal cortex Combined 0.55 0.03 �0.07 0.86 1.91 0.18

Left 0.56 0.02 �0.03 0.94 2.26 0.15

Right 0.51 0.05 �0.09 0.80 1.48 0.24

Lat. orbital frontal cortex Combined 0.39 0.13 0.16 0.66 1.70 0.21

Left 0.54 0.03 �0.12 0.73 0.78 0.39

Right 0.18 0.50 0.36 0.30 1.69 0.21

Medial orbital frontal cortex Combined 0.38 0.02 �0.18 0.63 1.71 0.20

Left 0.48 0.06 �0.45 0.20 0.02 0.90

Right 0.59 0.02 � 0.01 0.99 2.44 0.13

Supragenual cingulate Combined 0.38 0.15 0.27 0.45 2.50 0.13

Left 0.50 0.05 � 0.25 0.49 0.27 0.61

Right 0.12 0.66 0.46 0.18 2.20 0.15

Subgenual cingulate Combined 0.43 0.10 0.27 0.45 3.02 0.10

Left 0.59 0.02 �0.06 0.87 2.07 0.16

Right 0.07 0.78 0.19 0.60 0.42 0.52

Pregenual cingulate Combined 0.36 0.18 0.28 0.44 2.40 0.14

Left 0.30 0.28 �0.04 0.91 0.30 0.59

Right 0.23 0.39 0.33 0.36 1.77 0.20

Lateral temporal cortex Combined 0.51 0.05 0.28 0.43 4.14 0.05

Left 0.53 0.03 �0.06 0.86 1.28 0.27

Right 0.42 0.11 0.42 0.23 4.54 0.04

Mesial temporal cortex Combined 0.38 0.14 �0.08 0.84 0.52 0.48

Left 0.15 0.57 0.28 0.44 0.92 0.35

Right 0.54 0.03 � 0.29 0.41 0.10 0.76

Parietal cortex Combined 0.48 0.06 0.19 0.59 3.22 0.09

Left 0.28 0.29 0.19 0.60 1.23 0.28

Right 0.56 0.03 0.12 0.74 3.82 0.06

Occipital cortex Combined 0.35 0.19 �0.17 0.66 0.28 0.60

Left 0.28 0.30 � 0.25 0.51 0.01 0.92

Right 0.35 0.18 �0.10 0.78 0.42 0.52

CW, healthy control women; REC AN–BN, recovered anorexic women, bulimia type; rho, Pearson’s correlation coefficient, exact significance levels based on Monte
Carlo methods are reported.
*Comparison of the slope of the regional [18F] altanserin BP and age correlation between groups (analysis of variance).
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of dense projections from the subgenual cingulate cortex
(area 25) to the dorsal raphe (Freedman et al, 2000) raises
the tantalizing possibility that the subgenual cortex plays
some role in regulating overall serotonergic activity. In fact,
in CW the subgenual cingulate has the highest density of
[18F]altanserin binding (Table 2) of any region. Together
these data raise the possibility that some factor related to
subgenual cingulate function creates a vulnerability for AN
and BN, perhaps related to mood and autonomic modula-
tion.

We found negative relationships between [18F]altanserin
BP and the EDI-DT subscale in several regions, for example,
the left parietal cortex. Recently, Wagner et al (2003) found
a hyper-responsiveness in the parietal lobule in AN
subjects, when confronted with their own digitally distorted
body images using a computer-based video technique and
functional magnetic resonance imaging. Moreover, neuro-
psychologic studies are consistent with disturbances of
parietal function in AN (Horne et al, 1991; Palazidou et al,
1990; Mathias and Kent, 1998; Szmukler et al, 1992;
Hamsher et al, 1981). Mesulam (1999) describes a network
involving parietal, frontal, cingulate, and limbic pathways

that modulate spatial attention. It is well known that lesions
in the right parietal cortex may not only result in denial of
illness or anosognosia, but may also produce experiences of
disorientation of body parts and body image distortion
(Critchley, 1953). Kinsbourne and Bemporad (1984) hy-
pothesized that a dysfunction of the right hemisphere of the
brain, especially of the right parietal cortex, is evident in
patients with AN. Alternatively, our data raise the intriguing
possibility that L hemisphere parietal disturbances are
related to body image distortion.

The mechanism responsible for decreased 5-HT2A activity
in REC AN–BN is unknown. Still, evidence from other
studies raises the possibility that reduced activity of 5-HT2A

receptor could be an expected compensatory downregula-
tion for increased extracellular 5-HT concentration. Ele-
vated cerebrospinal fluid 5-hydroxyindoleacetic acid (CSF
5-HIAA) levels were found in subjects recovered from AN
(Kaye et al, 1991) and from BN (Kaye et al, 1998), raising
the possibility that they have increased 5-HT activity with
increased extracellular 5-HT concentration. Furthermore,
studies in animals confirm that reduced 5-HT2A receptor
density occurs in response to increased intrasynaptic 5-HT
(Rioux et al, 1999; Saucier et al, 1998) or 5-HT agonists
(Eison and Mullins, 1996).

A number of authors (Cloninger 1987; Soubrie, 1986;
Spoont, 1992) have suggested that increased 5-HT func-
tional activity is inhibitory of behavior and may be related
to harm avoidance. Most recently, 5-HT2A receptor binding
and harm avoidance were shown to be negatively correlated
in the frontal cortex in healthy subjects (Moresco et al,
2002) and in the prefrontal cortex in patients that attempted
suicide (van Heeringen et al, 2003). We found [18F]altan-
serin BP was positively related to harm avoidance and
negatively related to novelty seeking in REC AN–BN. In
particular, we found relationships with the Harm Avoidance
subscale 2, which particularly assesses fear of uncertainty
(Cloninger et al, 1994), in temporal and other regions. Our
data are consistent with the literature that implicates that
5-HT activity is related to anxiety and impulsivity in ill BN
subjects (Steiger et al, 2001a, b, c) and to impulsive, aggres-
sive behaviors in men (Arango et al, 1997; Coccaro et al,
1997; New et al, 1997; Siever and Trestman, 1993).

Our method of partial volume correction, applied in this
study, is a two-compartment method that does correct for
spillover between brain and CSF but not between gray and
white matter. While it is well known that ill AN subjects
have reduced cortical volume (Ellison and Fong, 1998) and
increased ventricular volume (Golden et al, 1996; Swayze
et al, 1996; Katzman et al, 1996), it remains uncertain
whether such brain volume reductions and enlargement of
CSF spaces persist in the recovered state (Artmann et al,
1985; Swayze et al, 2003). Some studies showed that weight-
recovered AN have significantly greater CSF volumes and
smaller gray matter volumes than healthy control women
(Lambe et al, 1997; Katzman et al, 1997, Krieg et al, 1988).
In this study, no group differences were detected between
the atrophy correction factors, across ROIs.

Several limitations of the study should be raised. We rely
upon subject self-report of recovered status. Normal plasma
BHBA and E2 values in REC AN–BN support the probability
that they have normal nutritional and gonadal status.
Studies in animals (Cyr et al, 1998; Summer and Fink, 1995)

Figure 2 (a) Correlation of Harm avoidance, subscale 2, and
[18F]altanserin binding potential (ALT BP) in the right mesial temporal
cortex. rho, Pearson’s correlation coefficient. (b) Correlation of Eating
Disorder Inventory-2 (EDI-2), subscale ‘drive for thinness’ and [18F]altan-
serin binding potential (ALT BP) in the left parietal cortex. rho, Pearson’s
correlation coefficient.
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and humans (Moses et al, 2000) suggest that E2 can alter
5-HT2A receptor activity. However, our study did not find
any relationships between [18F]altanserin BP and E2 plasma
levels. In vivo studies in people with major depression have
found both reduced (Biver et al, 1997; Attar-Levy et al, 1999;
Yatham et al, 2000; Messa et al, 2003) and normal (Meyer
et al, 2001) 5-HT2A receptor binding values. In addition,
decreased volume (Hirayasu et al, 1999) and reduced
cerebral blood flow and metabolism (Drevets et al, 1997,
2002; Buchsbaum et al, 1997) have been found in the left
subgenual cingulate in depressed subjects relative to
controls. Thus it is possible that subgenual cingulate
findings are not specific for AN–BN, but may be related
to the high incidence of lifetime MDD diagnosis in these
subjects. It should be noted that AN–BN subjects commonly
have comorbid depression and anxiety, so that such traits
may be vulnerabilities contributing to this particular ED
subtype.

We studied a relatively small number of AN and CW
subjects; future replications of our findings in larger
samples are clearly needed. A relatively large number of
statistical analyses were conducted with a small number of
subjects, potentially leading to type I errors. We present the
actual significance levels for all analyses, so that the strength
of the reported associations can be assessed. We also tried
to address some of the limitations of the study design using
several different approaches. We often used exact statistical
methods, so that the resulting significance levels were on
the conservative side. We were not able to use exact
methods for the modeling. For many of the models that
were fit, we screened the data for potential outliers using
standard residual and regression analysis diagnostic tech-
niques and found no unduly influential observations, that
is, observations that would change the inferences drawn
from the data if they were removed from the analysis. The
small sample size also resulted in the ability to detect only
large differences between the two groups in order to obtain
statistical significance.

When adjusting the significance levels for multiple
comparisons, using the method of false discovery rate
(Benjamini and Hochberg, 1995), none of our results would
be significant at the 0.05 level. However, at an overall
significance level of 0.10 group differences in [18F]altanserin
BP for the subgenual cingulate, the left subgenual cingulate
as well as the left parietal cortex remain significant.
Furthermore, correlations between [18F]altanserin BP and
age in CW remain significant at the 0.10 level for the left
prefrontal, left lateral orbital frontal, right medial orbital
frontal, left subgenual cingulate, left lateral temporal, right
mesial temporal, and right parietal cortex.

In conclusion, this study supports previous findings of
altered 5-HT neuronal transmission after recovery from
AN–BN. It is problematic to identify women with AN–BN
before they develop the disorder. Studying women after
long-term recovery may be the best available approximation
to identifying factors that might be involved in the
development of AN–BN. Although scarring effects from
the illness cannot be excluded, reduced 5-HT2A receptor
binding in AN–BN thus could be an indication of a trait-
related 5-HT disturbance or, alternatively, a secondary
phenomenon in response to increased central 5-HT
transmission in this group.
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